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Abstract

Purpose – The purpose of this paper is to investigate the ways to diminish or eliminate numerical
diffusion and dispersion. Numerical dispersion and diffusion are present in the predicted
macrosegregation profiles reported in the literature and they hinder the interpretation of the
simulation results. With the motivation to eliminate these numerical problems by employing
appropriate meshes, simulations of macrosegregation in a billet direct-chill cast from a multi-
component aluminium alloy has been performed.
Design/methodology/approach – First the idea that numerical dispersion could be alleviated by
refining the structured mesh size is tested and the extent of this mesh refining to overcome these
numerical problems is discussed. Second the link of numerical dispersion and diffusion to the type of
mesh used is investigated.
Findings – Unstructured mesh eliminates the numerical dispersion present in the structured mesh
while it introduces the numerical diffusion. It is concluded by performing calculations with the same
settings but different meshes that, although refining the structured mesh could alleviate the
numerical oscillation, it increases the computation time dramatically. Therefore the best solution to
overcome these numerical problems is the employment of a hybrid mesh consisting of both
structured and unstructured mesh.
Originality/value – This work reveals the reasons behind the numerical dispersion and diffusion in
macrosegregation modelling and gives a practical solution.
Keywords Modelling, Dispersions, Meshes, Alloys, Diffusion
Paper type Research paper
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Nomenclature

cp Specific heat (J/kg K)

C Mass fraction of alloy element

D Mass diffusion coefficient (m2/s)

f Mass fraction

g Volume fraction

H Enthalpy (J/kg)

k Equilibrium partition coefficient

K Permeability (m2)

p Pressure (N/m2)

L Latent heat (J/kg)

ms Liquidus slope (K)

RE Eutectic reaction rate (K�1)

t Time (s)

T Temperature (K)

TEut Eutectic reaction temperature (K)

TLiq Liquidus with composition Cm (K)

The authors would like to thank Dr Ian Hamill and Paul Guilbert for providing a customized
version of CFX 5.7.1. This work is performed within the framework of the research program of
the Netherlands Institute for Metals Research (www.nimr.nl), Project MC4.02134.
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TSol Solidus with composition Cm (K)

V Velocity (m/s)

�C Solutal expansion coefficient

�T Thermal expansion coefficient
(1/K)

� Thermal conductivity (W/m K)

� Dynamic viscosity (kg/s m)

� Density (kg/m3)

Subscripts l, s and m denote liquid, solid
and mixture, respectively. Superscript i
denotes alloying element i.

Introduction
Macrosegregation modelling has become a working instrument, which not only
attracts the research interests of metallurgist, but also researchers from mechanical
engineering (Han et al., 2007); however when it comes to modelling DC casting,
numerical dispersion and diffusion are present in the predicted macrosegregation
profiles reported in literature. For example the predicted radial macrosegregation
profile by Reddy and Beckermann (1997) shows the numerical dispersion. The reasons
for this oscillation may be the size of the rectangular mesh used, which is about 4 mm
and too coarse. In Vreeman et al. (2000), the sharp variation in copper composition close
to the billet surface appeared and the authors attributed it to the existence of large solid
fraction gradients and the inability to adequately resolve the flow field just above and
below the liquidus surface highlighting the importance of mesh size. A kind of hybrid
rectangular mesh in terms of mesh size is used by Thevik et al. (1999). In the horizontal
direction it is refined when it comes closer to the surface where large concentration
gradient is present. The maximum mesh size is at the billet center and is about 1 cm.
The minimum one is at the surface and is about 1 mm. The mesh size is also refined
in the sump region along the casting direction and its size is about 0.5 mm. However
due to the structured nature of this mesh, the refinement in the sump cannot be
achieved at the center and a very high aspect ratio defined by �x

�y is present there,
which could hinder the solution of macroscopic equations if thermo-solutal convection
is present.

Some research works were dedicated to understanding and eliminating these
numerical problems (Venneker and Katgerman, 2000, 2002). In Venneker and
Katgerman (2000), the numerical diffusion introduced by discretization schemes was
discussed and it was concluded that the numerical diffusion could be avoided by
aligning the mesh with the flow field, again indicating the importance of the mesh. The
authors attributed the numerical dispersion to the insufficient resolution of the
permeability, i.e. the insufficient resolution of the solid fraction field. Venneker and
Katgerman (2002) also tested different numerical schemes and concluded that
numerical predictions can be improved not only by decreasing the computational cell
size, but also with the correct choice of discretization scheme.

We can conclude that if the mesh used is not fine enough, which is a general case
upon modelling big real-scale problems due to the limitation of the computing power,
numerical dispersion could occur. Although numerical dispersion could be avoided by
employing so called ‘‘stabilized numerical technique’’ such as upwind scheme,
numerical diffusion could occur instead of numerical dispersion, which is also
detrimental for the results and only can be alleviated by fine mesh.

Motivated by these observations, we think it is worth to investigate the ways to
diminish or eliminate numerical diffusion and dispersion as the availability of parallel
computing technique and sophisticated simulation software allows exploring this
problem in a rigorous way, which may have been prohibitive previously.
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The first question to be addressed is: at what extent of structured mesh refining the
numerical dispersion can be eliminated or the simulation results can be considered as
reliable. It is generally accepted that these numerical problems can be minimized by
refining structured mesh although investigations about the criterion of being a ‘‘good’’
mesh are rare in the literature. As it is concluded in our recent publication (Eskin et al.,
2006) by employing an analytical method, the extent of shrinkage-induced
macrosegregation is associated with the slope of the coherency fraction contour. It
indicates that the macrosegregation profile is related to the secondary derivative of the
coherency contour. The coherency fraction contour has to be ‘‘second derivative smooth’’
in order to have a good prediction of the segregation profile highlighting the importance
of the spatial resolution of the temperature, or enthalpy, field. Another reason why the
thermal boundary layer has to be resolved is that permeability is very sensitive to the
variation of the solid fraction, which is essential associated with temperature, and bad
resolution of solid fraction leads to a big variation of the permeability, thus affecting
velocity field. With these in mind, it is expected that a criterion of a ‘‘good’’ mesh size
could be proposed by analysing the temperature field and its gradient.

The second question we want to answer is: will the unstructured mesh help in
eliminating the numerical dispersion and diffusion? Venneker (2003) recommended
unstructured mesh for future study in order to overcome the two drawbacks of the use
of structured mesh, namely the non-alignment of the mesh and the flow field, and the
inability to increase the mesh density only in regions where it is necessary. In our paper
the advantages associated with the use of unstructured mesh will be investigated.

The third issue we want to address is the use of hybrid mesh consisting of
structured and unstructured mesh. The reason why the hybrid mesh is employed is
mainly the compromise of the computation time and computational accuracy. To
decrease computation time it is not optimal to use very fine mesh in the whole
calculation domain such as in the solid zone where almost no solute transfer occurs
owning to a negligible diffusion coefficient. Unstructured meshes can be adopted and
this would reduce the total mesh number, and then, the computation time. However, as
Du et al. (2007) demonstrate if the zone where the solid fraction is equal to 1 is meshed
unstructuredly and coarsely to reduce computation time, numerical diffusion along the
radius occurs even though a second order numerical scheme is used. This could be
caused by the fact that this unstructured mesh does not provide the alignment of the
mesh to the velocity at which the solid is moving. Hence the only solution to this
dilemma is to use the hybrid meshes consisting of unstructured and structured ones.
Unstructured and finer mesh in the liquid and mushy zones can guarantee a good
spatial resolution and eliminate the numerical diffusion and dispersion there (Venneker,
2003), while the structured mesh created close to the surface can reduce the numerical
diffusion by providing the alignment of the mesh with the flow direction. In our paper
the three questions will be answered by comparing simulations results obtained with
the same setting but various meshes and numerical schemes.

In the next section, a model description is presented, followed by the section of
Numerical implementation. Then the calculation results are discussed, and a reliable
and affordable solution to these numerical problems is given. Conclusions are given in
the last section.

Model description
The macrosegregation model consists of three parts: a macroscopic transfer module, a
microsegregation module and a phase diagram calculation module. The rigid network
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model, originally formulated by Bennon and Incropera (1987) and re-assessed by
Prescott and Incropera (1991), is adopted as the macroscopic description to predict
macrosegregation during DC casting of multi-component alloys. Table I summarizes
the mathematical formulation of the rigid network model.

The closure of the set of conservation equations listed in Table I requires
supplementary relationships for phase mass fraction and composition, which can be
derived from microscopic scale considerations. These relationships for multi-
component alloys can be obtained based on the Gulliver-Scheil equation and they are
listed in Table II.

Table I.
Main equations that
comprise the
macrosegregation model
used in this work

Mass conservation @�m

@t
þr � ð�m

~VVmÞ ¼ 0
Momentum
conservation @ð�m

~VVmÞ
@t

þr � ð�m
~VVm

~VVmÞ ¼ �rpl þr � ð�l

�m

�l

r~VVmÞ �
�l�m

K�l

ð~VVm � ~VVcastÞ

� �lð�T;lðT � T0Þ þ
Xn

i¼1

�i
C;lðCi

l � C0ÞÞ~gg;

K ¼ K0
ð1� fsÞ3

f 2
s

½16�

n is the number of alloying elements. ~VVcast is the casting velocity.
K0 is permeability constant

Heat conservation @ð�mHmÞ
@t

þr � ð�mHm
~VVmÞ ¼ r � ð�mrTÞ � r � ð�mðHl � HmÞð~VVm � ~VVcastÞÞ

Species conservation @ð�mCi
mÞ

@t
þr � ð�mCi

m
~VVmÞ ¼ r � ð�mflDlrCi

mÞ þ r � ð�mflD
i
lrðCi

l � Ci
mÞÞ

� r � ð�mðCi
l � CmÞð~VVm � ~VVsÞÞ

Auxiliary relations

�m ¼ gs�s þ gl�l Hm ¼ fsHs þ flHl

1 ¼ gs þ gl Ci
m ¼ fsC

i
s þ flC

i
l

fl ¼
gl�l

�m
cpm ¼ fscps þ fl cpl

fs ¼
gs�s

�m
�m ¼ gs�s þ gl�l

~VVm ¼ fs
~VVs þ fl

~VVl Hs ¼ cpsT

Hl ¼ cpsTSol þ cplðT � TPureÞ þ L

Gulliver-Scheil equation

T > TLiqðCi
mÞ; fl ¼ 1; Ci

l ¼ Ci
m

TLiq � T > TEut ;
Ci

m ¼
ð1�fl

0

kiCi
l ðf 0s Þdf 0s þ flC

i
l

T ¼ TLiqðCi
l Þ

8><
>:

T � TEut;

fl ¼ maxðflðTþEutÞ þ REðT � TEutÞ; 0:0Þ
Ci

l ¼ Ci
Eut

(
Table II.
Supplementary
relationships required
for the closure of the
macroscopic
conservation equations
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The microsegregation module is a stand-alone application program that is coupled
with the ThermoCalc software to deal with multi-component alloys. Please refer to Du
et al. (2007) for details of this model.

Numerical implementation
The macrosegregation model was implemented using the commercial software CFX,
with the exception of the additional advection-like source term in the enthalpy and the
solute transfer equation. These terms were implemented within a custom version of the
CFX-5.7.1 solver. This implementation takes full advantages of the features provided
by the commercial CFD software, CFX-5, such as unstructured meshing and parallel
computing.

The model is applied to a round billet 200 mm in diameter and 453 mm in length.
The length of hot top, mould, air gap and impingement zone are 20, 15, 10 and 8 mm,
respectively. Only the bottom part of the hot top is modelled and the rest is considered
to be a melt reservoir. The secondary cooling zone consists of Wall 1 and Wall 2, both of
which are 200 mm in length. The settings for the billet and mould dimensions are
identical to those used in experiments described elsewhere by Eskin et al. (2004). An
axi-symmetric 2D model was used in this work. The melt of an Al-3.5 wt% Cu-1.5 wt%
Mg alloy at a temperature of 997 K enters the hot top at the casting speed 120 mm/min
multiplied by the ratio between the densities of the solid and liquid phases. A no-slip
flow boundary condition is applied on all of the walls. To make the solid, which adheres
to the walls of the mould, the air gap, impingement and water film domains, to have the
velocity equal to the casting speed, the velocities of the walls of all mentioned domains
are set to be equal to the casting speed. The boundary condition for the heat transfer
equation is that, at the inlet, the melt enters at the casting temperature and, at the
outlet, adiabatic boundary condition is applied. The hot top does not extract any heat
but the chill mould, impingement zone, air gap and water film zones do. The heat
fluxes on these walls are calculated by heat transfer coefficients, which are 5,000,
10,000, 2,500 and 10,000 W/m2/K, respectively (Venneker, 2003). These boundary
conditions together with the mesh used are shown in Figure 1.

Other input parameters required for this model are related to thermodynamic and
physical properties of the chosen alloy and are listed in Table III (Du et al., 2006; Brandes
and Brook, 1992, Vol 1966). For the sake of simplicity, the diffusion coefficients of the
species are taken equal to each other. Calculations were performed for steady-state
conditions that have been reached in the reference experiments (Nadella et al., 2006).

All of the performed calculations have taken into account solidification shrinkage
and thermo-solutal buoyancy. The Gulliver-Scheil equation coupled with ternary phase
diagram is employed to model the microscopic solidification behaviour. The simulation
is performed with structured, unstructured or hybrid meshes, all of which can be
created at various mesh sizes.

The main characteristics of calculations performed are illustrated in Table IV. The
various meshes used are shown in Figure 2.

Please note that for a structured mesh, the size given in Table IV is the width/height
of the rectangle mesh. For unstructured mesh, it is the edge length. The reason why
only the part at the outer radius is meshed with structured mesh is that high
concentration gradient present there may enforce the numerical diffusion. It will be
discussed in results and discussion section.

To compare the computation speed CPU times for each second of simulation time is
used as indicators and they are given in Table IV.
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Results and discussion
Although all of the calculations were performed for a ternary alloy, the calculation
results shown below are only for the Cu and the significance of the other alloy element,
Mg, on the overall segregation pattern has been discussed elsewhere by Du et al. (2007).

As shown in Figure 3a, numerical dispersion is present in Cal. 1 and Cal. 1A, all of
which use the structured mesh. As compared with Cal. 1, the oscillation amplitude is
reduced in Cal. 1A, whose mesh is finer than the one of Cal. 1.

The idea that mesh refining could alleviate the numerical oscillation was confirmed
although at the cost of quite long computation time. It is not surprising to have these
oscillations and this alleviation because central differencing scheme is used to deal
with the drifting term in solute transport equations, but still interesting is to answer
the question what is the criterion to be a good mesh.

As discussed in the Introduction section, we need to achieve a good resolution of
thermal field; otherwise an unrealistic shape of the coherence contour may be

Figure 1.
The geometry of the
calculation domain and
the boundary conditions
imposed

Table III.
Thermodynamic and
physical properties of an
Al-3.5 wt% Cu-1.5 wt%
Mg alloy

Prop. Values Prop. Values Prop. Values

�l 0.0013 kg m�1/s DMg
l 3 � 10�9 m2/s cs 958 J/kg/K

�l 2460 kg/m3 cl 1054 J/kg/K �s 180 W/m/K

�T;l 1.17 � 10�4 K�1 �l 95 W/m/K K0 6.67 � 10�11 m2

�Cu;l 0.73 �s 2750 kg/m3 L 3.9 � 105 J/kg

�Mg;l �0.41 DCu
s 3 � 10�13 m2/s

DCu
l 3 � 10�9 m2/s DMg

s 3 � 10�13 m2/s

Sources: Du et al. (2006); Brandes and Brook (1992); Vol (1966)
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produced, which in turn affects the prediction of the final surface segregation profile.
Considering a 1D case or the vertical direction of 2D case, a simple criterion would be
that between two adjacent cells the variation of solid fraction should not exceed a
critical number,�f Critical

s . Since the variation of solid fraction between two adjacent
cells can be related to their temperature variation by the following equation, the
criterion takes the following form:

�f

�T
�T

����
���� � �f Critical

s ð1Þ

Consider a cell size denoted by �x and use:

�T ¼ �T

�x
�x ð2Þ

so,

�f

�T

�T

�x
�x

����
���� � �f Critical

s

Table IV.
Main characteristics of
calculations performed

in the present work

Cal. 1 Fully structured meshes. Hot top, mould, air gap, impingement zone: 1 mm. Wall 1,
stretched mesh from 1.0 to 1.5 mm. Wall 2: uniform mesh, 1.5 mm. Radial direction:
stretched mesh. Centerline: 1.5 mm; at outer radius: 0.5 mm. The total number of
elements is approximately 38,000 hex elements, high resolution schemes for
advection terms
The CPU time for 1 s simulation time is 1,300 s

Cal. 1A The same as Cal. 1 but with refined mesh. Hot top, mould, air gap, impingement
zone: 0.5 mm. Wall 1, stretched mesh from 0.5 to 0.75 mm. Wall 2: uniform mesh,
0.75 mm. Radial direction: stretched mesh. Centerline: 0.75 mm; at outer radius:
0.25 mm. The total number of elements is approximately 154,614 hex elements, the
CPU time for 1 s simulation time is 4,000 s

Cal. 2 Medium fully unstructured meshes. Hot top, mould, air gap, impingement zone:
1 mm. Wall 1 and Wall 2: 2 mm. The total number of elements is 71,784 triangles,
high resolution schemes for advection terms
The CPU time for 1 s simulation time is 1,025 s

Cal. 3 Coarse hybrid meshes. Hot top, mould, air gap, impingement zone and Wall 1:
1.5 mm. Wall 2: 3 mm. 30 layers of structured meshes with first prism height
0.75 mm at the outer radius and expanding to the centerby a factor 1.05. Elements
consist of 5,325 quads, and 19,859 triangles, high resolution schemes for advection
terms
The CPU time for 1 s simulation time is 240 s

Cal. 4 Medium hybrid meshes. Hot top, mould, air gap, impingement zone, Wall 1: 1 mm.
Wall 2: 2 mm. 30 layers of structured meshes with first prism height 0.5 mm at the
outer radius and expanding to the center by a factor 1.05. Elements consist of 7,215
quads, and 41,436 triangles, high resolution schemes for advection terms
The CPU time for 1 s simulation time is 575 s

Cal. 5 Fine hybrid meshes. Hot top and mould: 0.3 mm, air gap and impingement zone:
0.5 mm, Wall 1: 1 mm, Wall 2: 2 mm. 30 layers of structured meshes with first prism
height 0.5 mm at the outer radius and expanding to the center by a factor 1.05.
Elements consist of 7,215 quads, and 126,971 triangles, high resolution schemes for
advection terms. (Its result is almost the same as 4A and not given in the paper)
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Arranging the above equation gives:

�x � �f Critical
s
�f
�T

�� �� 1
�T
�x

�� �� ð3Þ

For a binary alloy with linear phase diagram, assuming solidification path can be
described by Scheil-Gulliver equation, we have:

fs ¼ 1� ðT � T0

mC0
Þ

1
k�1 ð4Þ

so,

dfs

dT
¼

ðT�T0

mC0
Þ

1
k�1

ð1� kÞðT � ToÞ
¼ ð1� fsÞ2�k

ð1� kÞmC0
ð5Þ

Figure 2.
Schematic for various
meshes used in
calculations
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Substitute equation 5 for �f
�T

into equation 3 will allow one to deduce a restriction
on cell size assuming the temperature gradient is known. Equation (5) reveals that �f

�T
decreases with increasing solid fraction. This means the restriction imposed
by equation 3 would become looser as solid fraction increases.

The typical value of temperature gradient in the vicinity of the mould obtained from
our calculation is 103 K/m, although there is no an analytical expression for �f

�T
due to

the non-linear nature of the real phase diagram, it can be easily deduced from
numerically solving Scheil-Gulliver equation. We are interesting in the restriction
imposed by this criterion when solid fraction is 0.05, as explained later, at which the

Figure 3.
The relative

macrosegregation profile
of Cu along the radius

direction of the billet
calculated with different

structured mesh sizes (a)
and with different types

of meshes (b)
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other criterion to be discussed later in this paper has the most severe restriction. Let us
take �f Critical

s is equal to 0.05, we have:

�x � �f Critical
s
�f
�T

�� �� 1
�T
�x

�� �� ¼ 0:69
�T
�x

�� �� ð6Þ

so equation 6 will give the critical cell size of 0.69 mm. This criterion is satisfied in Cal.
1A, Cal. 4 and Cal. 5.

The other criterion is from the permeability consideration. Based on the balance
between buoyancy and drag forces imposed by the dendritic matrix, Krane and
Incropera (1996) deduced a relation between the appropriate velocity scale and the
permeability in the mushy zone by a scaling analysis, which is given below:

v0 /
�gð�s�C�

l;0 � �T�T0ÞK
�

ð7Þ

This relation is suitable for estimating the velocity variations in the mushy zone under
the condition that porous flow dominates over viscous flow.

Consider a cell size denoted by �x, between two adjacent cells, then one can link the
velocity variations to the permeability variations induced by temperature change as:

�v0

v0
/ �K

K
¼

�K
�T

K
�T ¼

�K
�T

K

�T

�x
�x ð8Þ

It is desirable to have this relative variation less than a critical relative velocity denoted
by �vCritical

Rel , so:

�x � �vCritical
Re l K
�K
�T

�� �� 1
�T
�x

�� �� ð9Þ

Equation (9) is a criterion being a ‘‘good’’ mesh deduced from the permeability
consideration.

To evaluate equation 9, the permeability and solid fraction as a function of
temperature are necessary. The most widely used relation and also adopted in our
calculations is Kozeny-Carmon relation, which is:

K ¼ K0
ð1� fsÞ3

f 2
s

ð10Þ

Please note that for simplicity it is assumed that solid and liquid densities are equal,
therefore solid mass fraction and solid volume fraction are equal.

So the derivative of permeability over solid fraction is:

dK

dfs
¼ �K0

2� 3fs þ f 3
s

f 3
s

ð11Þ
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Assuming solidification proceeds in Scheil-type way, and for a binary alloy with linear
phase diagram, combining with equation 5:

dK

dT
¼ dK

dfs

dfs

dT
¼ K0

ð1� fsÞ2ð2þ fsÞ
T � T0

mC0

� � 1
k�1

f 3
s ðk� 1ÞðT � ToÞ

¼ K0
ð1� fsÞ3ð2þ fsÞ

f 3
s ðk� 1ÞðT � ToÞ

¼ K0
ð1� fsÞ4�kð2þ fsÞ

f 3
s ðk� 1ÞmC0

ð12Þ

so,

K
dK
dT

¼ ð1� fsÞk�1fsðk� 1ÞmC0

ð2þ fsÞ
ð13Þ

Combining equation 13 with equation 9, we have:

�x � �vCritical
Re l

ð1� fsÞk�1fsðk� 1ÞmC0

ð2þ fsÞ
1

�T=�x

�����
����� ð14Þ

Applying equation 14 to the binary Al-4.5wt% Cu with a linear phase diagram
(k¼ 0.171, ms ¼ �340 K), which can be regarded as a close analogy of the ternary
alloy we modeled, it is readily to have a relation between K=ð�K=�TÞ and solid
fraction as shown in Figure 4.

Although the term K=ð�K=�TÞ is very small when solid fraction is less 5 per cent,
which would give a very tight restriction on mesh size, equation 7, which this criterion
is built on, is not applicable in this rang of solid fraction because this Darcy term is not
significant as a result of high permeability as discussed by Krane and Incropera (1996).
The starting point where the Darcy term starts to dominate is when solid fraction is
approximately 0.05, and it is where the most severe restriction is imposed over �x. So

�x � �vCritical
Re l

0:32
�T
�x

ð15Þ

Figure 4.
K=�K

�T
as a function of

solid fraction
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Let us take �vCritical
Re l as 0.5 and equation 15 becomes

�x � 0:16
�T
�x

ð16Þ

Compared with the equation 6, this criterion gives tighter restriction.
In our calculations, the temperature gradient in vertical direction can be as high as

1,000 K/m, and equation 16 means any mesh with size above 0.16 mm would be bad in
the region around solid fraction contour of 0.05. This tight criterion is hardly to be met
in the calculations; therefore it is unavoidable to have some numerical problems in
calculating velocity fields around the liquidus contour.

To summarize being a ‘‘good’’ mesh have to satisfy the two criterions deduced above,
which are put into Table V.

Another interesting comparison is between the relative segregation profiles along
the radius direction of Cal. 1 on one side, and Cal. 2, 3 and 4 on the other side as shown
in Figure 3b. Only Cal. 1 exhibits the numerical dispersion. The reason why numerical
dispersion disappear in Cal. 2 could be that numerical diffusion present in Cal. 2
removed numerical dispersion. Numerical diffusion is present in Cal. 2 is proved by
examining Figure 5, which shows the relative segregation profile along the casting
direction at the surface.

In Figure 5, the X axis is the distance along the casting direction just below the inlet
surface. In all of the calculations, the relative segregation is zero at the inlet surface, i.e.
the relative distance of zero, where solidification still does not start and only the liquid
phase is present. As the position lowered it enters the mushy zone and the relative
segregation is first sharply down due to the convection bringing the solute away from

Table V.
Two criterions for
eliminating numerical
dispersion

Criterions deduced based on Maximum mesh size

Thermal filed
�f Critical

s
�f
�T

�� �� 1
�T
�x

�� ��
Permeability filed �vCritical

Re l

ð1� fsÞk�1fsðk� 1ÞmC0

ð2þ fsÞ
1

�T
�x

�����
�����

Figure 5.
The relative segregation
profile along the casting
direction at the surface
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the surface to the centerand, then is sharply up due to the shrinkage induced flow
sucking back some solute. The peak value in these curves corresponds to the position
where solidification ends. Lower than this position there should not be any change in
the relative segregation because the solid diffusion coefficient of the solute is negligible.
However in Cal. 2 it keeps decreasing due to the numerical diffusion.

This comparison revealed that although unstructured mesh could decrease
computation time by ‘‘fine meshing only the necessary region’’, it introduced the
numerical diffusion. This numerical diffusion by no means only exists in the solid zone;
it must spread the entire calculation domain. Therefore, the answer to our second
questions raised in Introduction section, is that the use of unstructured mesh is two-
fold. On one side, it can decrease the computation time due to the decrease in mesh
number by ‘‘fine meshing only the necessary region’’ without sacrificing the
computation speed, or, we can say it can improve the calculation accuracy without
dramatically increasing the computation time if only the ‘‘necessary’’ region is meshed
very finely. On the other side, it may introduce the numerical diffusion. Therefore it is
not wise to employ unstructured mesh in the zone such as the surface of the solid zone
where the flow direction is known to be straightly downwards and concentration
gradients are high. Naturally the hybrid mesh is an optimal option, which leads us to
the discussion on the answer to our third question raised in Introduction section.

The advantage of hybrid mesh is also shown in Figure 5. For the relative
segregation profile along the casting direction at the surface, Cal. 2 suffered numerical
diffusion. While in the calculation with the hybrid meshes Cal. 3 and Cal. 4, it is almost
constant, and only a slightly decrease is present in a small zone in Cal. 3 and Cal. 4 after
solidification is finished, which actually corresponds to the transition zone from the
unstructured mesh to the structured mesh. The elimination of numerical diffusion in
Cal. 3 and Cal. 4 leads to a higher average concentration than the calculation with fully
unstructured mesh, Cal. 2 as shown in Figure 3b.

The advantage of hybrid mesh can be seen by the comparison of Cal. 4 with Cal. 1
and Cal. 2. As discussed above, Cal. 1 experiences numerical dispersion and Cal. 2
suffers numerical diffusion. While in Cal. 4 both of these two numerical problems have
been minimized. It should be noted that the profiles calculated Cal. 4 and Cal. 5 (with
finer hybrid meshes and not shown in this paper) are almost identical.

Conclusions
By performing calculations with the same settings but different meshes it is concluded
that although refining the structured mesh could alleviate the numerical dispersion, it
increases dramatically the computation time since the mesh has to be refined to the
extent imposed by the two tight criterions. The use of fully unstructured mesh could
decrease the computation time by only fine meshing the necessary region, but it may
suffer numerical diffusion. Therefore the best solution to overcome these numerical
problems is the employment of a hybrid mesh consisting of structured and
unstructured mesh. This suggestion is confirmed by the calculations carried out in this
paper.
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